4.0 Article

Public goods games in populations with fluctuating size

期刊

THEORETICAL POPULATION BIOLOGY
卷 121, 期 -, 页码 72-84

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.tpb.2018.01.004

关键词

Branching process; Cooperation; Public goods game; Wright-Fisher process

资金

  1. Office of Naval Research [N00014-16-1-2914]
  2. Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-2015-05795]
  3. Program for Evolutionary Dynamics

向作者/读者索取更多资源

Many mathematical frameworks of evolutionary game dynamics assume that the total population size is constant and that selection affects only the relative frequency of strategies. Here, we consider evolutionary game dynamics in an extended Wright-Fisher process with variable population size. In such a scenario, it is possible that the entire population becomes extinct. Survival of the population may depend on which strategy prevails in the game dynamics. Studying cooperative dilemmas, it is a natural feature of such a model that cooperators enable survival, while defectors drive extinction. Although defectors are favored for any mixed population, random drift could lead to their elimination and the resulting pure-cooperator population could survive. On the other hand, if the defectors remain, then the population will quickly go extinct because the frequency of cooperators steadily declines and defectors alone cannot survive. In a mutation-selection model, we find that (i) a steady supply of cooperators can enable long-term population survival, provided selection is sufficiently strong, and (ii) selection can increase the abundance of cooperators but reduce their relative frequency. Thus, evolutionary game dynamics in populations with variable size generate a multifaceted notion of what constitutes a trait's long-term success. (C) 2018 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据