4.7 Article

A novel highly sensitive and selective H2S gas sensor at low temperatures based on SnO2 quantum dots-C(60 )nanohybrid: Experimental and theory study

期刊

TALANTA
卷 188, 期 -, 页码 531-539

出版社

ELSEVIER
DOI: 10.1016/j.talanta.2018.05.099

关键词

SnO(2)QDs-C-60; Nanohybrid; H2S Gas sensors; DFT calculation

资金

  1. Research Institute of Petroleum Industry (RIPI) [86870304]
  2. Shahid Chamran University

向作者/读者索取更多资源

In this study, SnO2 quantum dots-fullerene (SnO2-QDs-C-60) nanohybrid as novel sensing material was synthesized by a simple hydrothermal method. The structure and morphology of the synthesized sample were studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The prepared hybrid was used as gas sensors for detection of different gasses including 70 ppm H2S, 1% methane, and 1% propane at low temperatures of 100-200 degrees C. The results indicated that the SnO2 QDs-C(60 )nanohybrid has high response and high selectivity to 70 ppm H2S, 1% methane, and 1% propane gasses at low temperatures. The highest response (R-air/R-gas) of 66.0 and 5.4-70 ppm H2S and 1% methane gasses at 150 degrees C and the response of 2.7-1% propane at 200 degrees C were observed for the prepared nanohybrid gas sensor. Moreover, the prepared sensor showed a good selectivity toward H2S gas. Also, DFT calculations were used for studying the interaction of these gases with SnO2-C-60. DFT results showed that H2S has the strongest interaction and the highest effect on band-gap variation which is in a good agreement with experimental results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据