4.7 Article

Mismatch between observed and modeled trends in dissolved upper-ocean oxygen over the last 50 yr

期刊

BIOGEOSCIENCES
卷 9, 期 10, 页码 4045-4057

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-9-4045-2012

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [Sonderforschungsbereich 754]
  2. NOAA Climate Program Office

向作者/读者索取更多资源

Observations and model runs indicate trends in dissolved oxygen (DO) associated with current and ongoing global warming. However, a large-scale observation-tomodel comparison has been missing and is presented here. This study presents a first global compilation of DO measurements covering the last 50 yr. It shows declining upper-ocean DO levels in many regions, especially the tropical oceans, whereas areas with increasing trends are found in the subtropics and in some subpolar regions. For the Atlantic Ocean south of 20 degrees N, the DO history could even be extended back to about 70 yr, showing decreasing DO in the subtropical South Atlantic. The global mean DO trend between 50 degrees S and 50 degrees N at 300 dbar for the period 1960 to 2010 is -0.066 mu mol kg(-1) yr(-1). Results of a numerical biogeochemical Earth system model reveal that the magnitude of the observed change is consistent with CO2-induced climate change. However, the pattern correlation between simulated and observed patterns of past DO change is negative, indicating that the model does not correctly reproduce the processes responsible for observed regional oxygen changes in the past 50 yr. A negative pattern correlation is also obtained for model configurations with particularly low and particularly high diapycnal mixing, for a configuration that assumes a CO2-induced enhancement of the C : N ratios of exported organic matter and irrespective of whether climatological or realistic winds from reanalysis products are used to force the model. Depending on the model configuration the 300 dbar DO trend between 50 degrees S and 50 degrees N is -0.027 to -0.047 mu mol kg(-1) yr(-1) for climatological wind forcing, with a much larger range of -0.083 to +0.027 mu mol kg(-1) yr(-1) for different initializations of sensitivity runs with reanalysis wind forcing. Although numerical models reproduce the overall sign and, to some extent, magnitude of observed ocean deoxygenation, this degree of realism does not necessarily apply to simulated regional patterns and the representation of processes involved in their generation. Further analysis of the processes that can explain the discrepancies between observed and modeled DO trends is required to better understand the climate sensitivity of oceanic oxygen fields and predict potential DO changes in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据