4.7 Article

Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2018.06.004

关键词

Fourier transform near-infrared spectroscopy; Chemometrics; Rhodiola; Authenticity identification; Kernel extreme learning machine (KELM); Partial least squares discriminant analysis (PLS-DA)

资金

  1. Technology Huimin Technology Research and Development Project of Chengdu Science and Technology Bureau [2016-HM01-00339-SF]
  2. Applied Basic Research Project of Sichuan Provincial Department of Science and Technology [2016JY0247]

向作者/读者索取更多资源

Rhodiola is an increasingly widely used traditional Tibetan medicine and traditional Chinese medicine in China. The composition profiles of bioactive compounds are somewhat jagged according to different species, which makes it crucial to identify authentic Rhodiola species accurately so as to ensure clinical application of Rhodiola. In this paper, a nondestructive, rapid, and efficient method in classification of Rhodiola was developed by Fourier transform near-infrared (FT-NIR) spectroscopy combined with chemometrics analysis. A total of 160 batches of raw spectra were obtained from four different species of Rhodiola by FT-NIR, such as Rhodiola crenulata, Rhodiola fastigiata, Rhodiola kirilowii, and Rhodiola brevipetiolata. After excluding the outliers, different performances of 3 sample dividing methods, 12 spectral preprocessing methods, 2 wavelength selection methods, and 2 modeling evaluation methods were compared. The results indicated that this combination was superior than others in the authenticity identification analysis, which was FT-NIR combined with sample set partitioning based on joint x-y distances (SPXY), standard normal variate transformation (SNV) + Norris-Williams (NW) + 2nd derivative, competitive adaptive reweighted sampling (CARS), and kernel extreme learning machine (KELM). The accuracy (ACCU), sensitivity (SENS), and specificity (SPEC) of the optimal model were all 1, which showed that this combination of FT-NIR and chemometrics methods had the optimal authenticity identification performance. The classification performance of the partial least squares discriminant analysis (PLS-DA) model was slightly lower than KELM model, and PLS-DA model results were ACCU = 0.97, SENS = 0.93, and SPEC = 0.98, respectively. It can be concluded that FT-NIR combined with chemometrics analysis has great potential in authenticity identification and classification of Rhodiola, which can provide a valuable reference for the safety and effectiveness of clinical application of Rhodiola. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据