4.7 Article

Experimental study on the specific heat and stability of molten salt nanofluids prepared by high-temperature melting

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 176, 期 -, 页码 42-48

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2017.11.021

关键词

Molten salt; High-temperature melting; Nanoparticle; Heat capacity; Stability

资金

  1. National Natural Science Foundation of China [51706005]
  2. National Basic Research Program of China (973 Program) [2015CB251303]
  3. Science and Technology Plan General Program of Beijing Municipal Commission of Education [KM201610005017, KM201710005009]
  4. Beijing Natural Science Foundation [8174061]

向作者/读者索取更多资源

Molten salt is an important heat storage and heat transfer medium in solar thermal power generation technology due to its high heat capacity, wide working temperature range, and low cost. Adding nanoparticles (usually by the two-step method with ultrasonic dispersion) can increase the specific heat of molten salt. Thus, the molten salt nanofluids can increase the heat capacity and decrease the heat storage cost of a solar thermal power generation system. However, nanoparticles are easy to agglomerate in the molten salt; moreover, after agglomeration, the performance of molten salt nanofluids is degraded. A two-step method with high-temperature melting in preparing molten salt nanofluids is proposed in this paper. Molten salt nanofluids were prepared by high-temperature melting. The base solution was a low-melting point molten salt and the nanoparticles were SiO2 with a diameter of 20 nm. The specific heat was measured and the nanoparticle dispersity was analyzed. The stability of the molten salt nanofluids was studied, and the results were compared with those prepared by ultrasonic dispersion. The average specific heat of molten salt nanofluids prepared by high-temperature melting was 1.789 J/(g.K), which was close to that of molten salt nanofluids prepared by ultrasonic dispersion and 16.4% higher than that of pure molten salt. The molten salt nanofluids prepared by ultrasonic dispersion showed poor thermal stability under high-temperature conditions, and the average specific heat decreased by 8.5% after only 200 h. The thermal stability of molten salt nanofluids prepared by high-temperature melting showed a highly stable performance in long-time experiments. The variation of specific heat was less than 5% after 2000 h under the same high-temperature experimental condition. The molten salt nanofluids obtained by high-temperature melting showed better stability and long performance than those obtained by ultrasonic dispersion. Therefore, the two-step method with high-temperature melting is stable and reliable for preparing molten salt nanofluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据