4.4 Article

Effects of industrial by-product based geopolymers on the strength development of a soft soil

期刊

SOILS AND FOUNDATIONS
卷 58, 期 3, 页码 716-728

出版社

JAPANESE GEOTECHNICAL SOC
DOI: 10.1016/j.sandf.2018.03.005

关键词

Marine clay; Fly ash; Slag; Geopolymer; Strength; Microstructure

资金

  1. Australian Research Council's Linkage Projects funding scheme [LP150100043]
  2. Thailand Research Fund under the TRF Senior Research Scholar program [RTA5980005]
  3. Suranaree University of Technology
  4. Australian Research Council [LP150100043] Funding Source: Australian Research Council

向作者/读者索取更多资源

Portland cement is traditionally used as a binder in ground improvement projects on soft soil foundations. The use of cement in ground improvement projects, however, is fraught with both, financial and environmental concerns due to its relatively high cost, the use of natural resources and the high carbon footprint from cement production. Attempts are being made to find alternative environmentally friendly binders with a low carbon footprint using industrial by-products such as fly ash (FA) and slag (S). Using waste byproducts such as FA and S to produce geopolymer binders, as novel green cementitious materials, may provide an environmentally friendly and effective ground improvement option. In this study, the effect of adding geopolymers to a soft soil was investigated for usage in deep soil mixing (DSM) applications. The soil was a soft marine clay known as Coode Island Silt (CIS). Different combinations of FA and S with six combinations of sodium and potassium based liquid alkaline activators (L) were added to the soil to study the effects on its engineering and chemical properties. These changes were evaluated via an unconfined compression strength (UCS) test, scanning electron microscopy (SEM) imaging and energy-dispersive X-ray spectroscopy (EDS) tests. The tests were conducted after 3, 7, 14 and 28 days of curing. Based on the results, the important role of L in strength development was studied, and the combination of 30% NaOH with 70% Na2SiO3 was found to achieve the highest strengths. Furthermore, increasing the S content was found to result in significant improvements in strength. The excellent correlation between strength and stiffness shown in the results are expected to help in the development of relationships for strength prediction of these green binders in geotechnical applications. This study shows that FA and S based geopolymers can be used as sustainable binders in DSM projects, with significant environmental benefits. (C) 2018 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据