4.7 Article

Performance of a Sensitive Micromachined Accelerometer With an Electrostatically Suspended Proof Mass

期刊

IEEE SENSORS JOURNAL
卷 15, 期 1, 页码 209-217

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2014.2340862

关键词

MEMS accelerometer; space accelerometer; electrostatic suspension; suspension stiffness; cross-axis coupling

资金

  1. National Natural Science Foundation of China [61374207, 41074049]

向作者/读者索取更多资源

A three-axis micromachined accelerometer with a proof mass suspended electrostatically in six degrees of freedom was designed and tested to evaluate its performance of this sensitive sensor for potential microgravity space applications. The device is based on a glass/silicon/glass bonding structure, fabricated by bulk micromachining process, and operated with force-balance technology. The motion of the proof mass with respect to each side is fully servo-controlled by capacitive position sensing and electrostatic force feedback. The design and simulation of multiaxis suspension control loops are presented based on the stiffness requirements for different full-scale ranges. The ground test of this sensitive accelerometer is facilitated by setting the vertical axis at a relatively high measurement range to counteract the one-g gravity, whereas the range in two lateral axes can be set as low as possible to achieve high sensitivity. Detailed experimental results of electrostatic suspension, three-axis accelerometer, and its cross-axis sensitivity are presented with the device operated initially in an atmospheric environment. The preliminary test results of a prototype accelerometer show that a sensitivity up to 688.8 V/g and a noise density down to 3 mu g/Hz(1/2) can be achieved by setting an extremely low full-scale range of +/- 2.90 mg. The results also show that much different stiffness levels in the design of three-axis suspension is a major source of cross coupling effects in the prototype accelerometer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据