4.7 Article

Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 116, 期 -, 页码 11-21

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2017.09.025

关键词

Rhizosphere; Ecoenzymatic stoichiometry; Microbial metabolism; Threshold elemental ratio; Loess Plateau

资金

  1. National Natural Science Foundation of China [41571314, 41201226]
  2. CAS Light of West China Program [XAB2016A03]

向作者/读者索取更多资源

Arid ecosystems are characterized as having stressful conditions of low energy and nutrient availability for soil microorganisms and vegetation. The rhizosphere serves as the one of most active microorganism habitats, however, the general understanding of the ecoenzymatic stoichiometry (exoenzymes) and microbial nutrient acquisition in rhizosphere soil is limited. Here, we investigated the vegetation communities and determined the soil physicochemical properties, microbial biomass, and enzymatic activities in rhizosphere under different vegetation and soil types in the arid area of the northern Loess Plateau. Type II standard major axis (SMA) regression analysis showed that the plants played a more important role than soil properties in determining ecoenzymatic stoichiometry. Linear regression analysis displayed a microbial stoichiometric homeostasis (community-level) in rhizosphere. The Threshold Elemental Ratio (TER) revealed that the microbial nutrient metabolisms of rhizosphere were co-limited by N and P in the A. ordosica and A. cristatum communities of loess, and A. cristatum communities of feldspathic sandstone weathered soil. Binding spatial ordination analysis (RDA and CCA) demonstrated that soil physical properties (e.g., soil moisture, silt and clay contents) have more contribution to ecoenzymatic stoichiometry than the other investigated soil parameters, whereas soil nutrients (e.g., total organic carbon, nitrogen, and phosphorus) predominantly controlled microbial nutrient ratios. Therefore, the ecoenzymatic stoichiometry in rhizosphere is greatly regulated by plants and soil physical properties. The microbial N and P are co-limited under Gramineae plant in loess and feldspathic sandstone weathered soil regions. Meanwhile, the microbial nutrient limitation is mainly affected by soil nutrient supply. These findings could be crucial for illuminating rhizosphere microbial metabolism and revealing the nutrient cycling of root-soil interface under arid and oligotrophic ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据