4.6 Article

Active cargo transport with Janus colloidal shuttles using electric and magnetic fields

期刊

SOFT MATTER
卷 14, 期 23, 页码 4741-4749

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sm00513c

关键词

-

资金

  1. Swiss National Science Foundation (SNSF) through the National Center of Competence in Research Bio-Inspired Materials

向作者/读者索取更多资源

Active colloids show non-equilibrium behavior that departs from classical Brownian motion, thus providing a platform for novel fundamental phenomena and for enticing possible applications ranging from water treatment to medicine and microrobotics. Although the physics, motion mechanisms and guidance have been extensively investigated, active colloids are rarely exploited to simultaneously guide and transport micron-sized objects in a controllable and reversible manner. Here, we use autonomous active Janus particles as colloidal shuttles to controllably transport cargo at the microscale using external electric and magnetic fields. The active motion arises from the metallodielectric characteristics of the Janus particles, which allows them to also trap, transport and release cargo particles through dielectrophoretic interactions induced by an AC electric field. The ferromagnetic nature of the nickel layer that forms the metallic hemisphere of the Janus colloids provides an additional mechanism to direct the motion of the shuttle using an external magnetic field. With this highly programmable colloidal system, we are able to harness active colloid motion and use it to transport cargo particles to specific destinations through a pre-defined route. A simple analytical model is derived to successfully describe the motion of the shuttle-cargo assembly in response to the applied electrical field. The high level of control on cargo pick-up, transport and release leads to a powerful delivery tool, which could eventually be used in microactuators, microfluidics or for controlled delivery within organ-on-a-chip devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据