4.6 Article

Structure-induced switching of interpolymer adhesion at a solid-polymer melt interface

期刊

SOFT MATTER
卷 14, 期 7, 页码 1108-1119

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7sm02279d

关键词

-

资金

  1. NSF [CMMI-1332499]
  2. DOE Office of Science [DE-AC02-98CH10886]
  3. Office of Science of the U.S. DOE [DEAC05-00OR22725]
  4. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division

向作者/读者索取更多资源

Here we report a link between the interfacial structure and adhesive property of homopolymer chains physically adsorbed (i.e., via physisorption) onto solids. Polyethylene oxide (PEO) was used as a model and two different chain conformations of the adsorbed polymer were created on silicon substrates via the well-established Guiselin's approach: flattened chains'' which lie flat on the solid and are densely packed, and loosely adsorbed polymer chains'' which form bridges jointing up nearby empty sites on the solid surface and cover the flattened chains. We investigated the adhesion properties of the two different adsorbed chains using a custom-built adhesion testing device. Bilayers of a thick PEO overlayer on top of the flattened chains or loosely adsorbed chains were subjected to the adhesion test. The results revealed that the flattened chains do not show any adhesion even with the chemically identical free polymer on top, while the loosely adsorbed chains exhibit adhesion. Neutron reflectivity experiments corroborated that the difference in the interfacial adhesion is not attributed to the interfacial brodening at the free polymer-adsorbed polymer interface. Instead, coarse-grained molecular dynamics simulation results suggest that the tail parts of the loosely adsorbed chains act as connector molecules'', bridging the free chains and substrate surface and improving the interfacial adhesion. These findings not only shed light on the structure-property relationship at the interface, but also provide a novel approach for developing sticking/anti-sticking technologies through precise control of the interfacial polymer nanostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据