4.8 Article

Nitrogen-Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor.

期刊

SMALL
卷 14, 期 13, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201703934

关键词

breath analysis; catalysts; humidity sensors; graphene fibers; nitrogen doping

资金

  1. Wearable Platform Materials Technology Center (WMC) - National Research Foundation of Korea (NRF) Grant of the Korean Government (MSIP) [2016R1A5A1009926]
  2. NanoMaterial Technology Development Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2016M3A7B4905609, 2016M3A7B4905619]

向作者/读者索取更多资源

Humidity sensors are essential components in wearable electronics for monitoring of environmental condition and physical state. In this work, a unique humidity sensing layer composed of nitrogen-doped reduced graphene oxide (nRGO) fiber on colorless polyimide film is proposed. Ultralong graphene oxide (GO) fibers are synthesized by solution assembly of large GO sheets assisted by lyotropic liquid crystal behavior. Chemical modification by nitrogen-doping is carried out under thermal annealing in H-2(4%)/N-2(96%) ambient to obtain highly conductive nRGO fiber. Very small (approximate to 2 nm) Pt nanoparticles are tightly anchored on the surface of the nRGO fiber as water dissociation catalysts by an optical sintering process. As a result, nRGO fiber can effectively detect wide humidity levels in the range of 6.1-66.4% relative humidity (RH). Furthermore, a 1.36-fold higher sensitivity (4.51%) at 66.4% RH is achieved using a Pt functionalized nRGO fiber (i.e., Pt-nRGO fiber) compared with the sensitivity (3.53% at 66.4% RH) of pure nRGO fiber. Real-time and portable humidity sensing characteristics are successfully demonstrated toward exhaled breath using Pt-nRGO fiber integrated on a portable sensing module. The Pt-nRGO fiber with high sensitivity and wide range of humidity detection levels offers a new sensing platform for wearable humidity sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据