4.8 Article

Highly Porous Mn3O4 Micro/Nanocuboids with In Situ Coated Carbon as Advanced Anode Material for Lithium-Ion Batteries

期刊

SMALL
卷 14, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201704296

关键词

anodes; in situ coated carbon; lithium-ion batteries; micro/nanocuboids; Mn3O4

资金

  1. National Natural Science Foundation of China [51772154, 51702164, 51572129]
  2. Natural Science Foundation of Jiangsu Province [BK20170844, BK20170036]
  3. International S&T Cooperation Program of China [2016YFE0111500]

向作者/读者索取更多资源

The electrochemical performance of most transition metal oxides based on the conversion mechanism is greatly restricted by inferior cycling stability, rate capability, high overpotential induced by the serious irreversible reactions, low electrical conductivity, and poor ion diffusivity. To mitigate these problems, highly porous Mn3O4 micro/nanocuboids with in situ formed carbon matrix (denoted as Mn3O4@C micro/nanocuboids) are designed and synthesized via a one-pot hydrothermal method, in which glucose plays the roles of a reductive agent and a carbon source simultaneously. The carbon content, particle size, and pore structure in the composite can be facilely controlled, resulting in continuous carbon matrix with abundant pores in the cuboids. The as-fabricated Mn3O4@C micro/nanocuboids exhibit large reversible specific capacity (879 mAh g(-1) at the current density of 100 mA g(-1)) as well as outstanding cycling stability (86% capacity retention after 500 cycles) and rate capability, making it a potential candidate as anode material for lithium-ion batteries. Moreover, this facile and effective synthetic strategy can be further explored as a universal approach for the synthesis of other hierarchical transition metal oxides and carbon hybrids with subtle structure engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据