4.8 Article

Controlled Propulsion of Two-Dimensional Microswimmers in a Precessing Magnetic Field

期刊

SMALL
卷 14, 期 24, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201800722

关键词

chirality; low Reynolds number; microswimmers; nanomotors; precessing magnetic fields

向作者/读者索取更多资源

Magnetically actuated micro-/nanoswimmers can potentially be used in noninvasive biomedical applications, such as targeted drug delivery and micromanipulation. Herein, two-dimensional (2D) rigid ferromagnetic microstructures are shown to be capable of propelling themselves in three dimensions at low Reynolds numbers in a precessing field. Importantly, the above propulsion relies neither on soft structure deformation nor on the geometrical chirality of swimmers, but is rather driven by the dynamic chirality generated by field precession, which allows an almost unconstrained choice of materials and fabrication methods. Therefore, the swimming performance is systematically investigated as a function of precession angle and geometric design. One disadvantage of the described propulsion method is that the fabricated 2D swimmers are achiral, which means that the forward/backward swimming direction cannot be controlled. However, it has been found that asymmetric 2D swimmers always propel themselves toward their longer arm, which implies that dynamic chirality can be constrained to be either right-handed or left-handed by permanent magnetization. Thus, the simplicity of fabrication and possibility of dynamic chirality control make the developed method ideal for applications and fundamental studies that require a large number of swimmers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据