4.8 Article

Directed Vertical Diffusion of Photovoltaic Active Layer Components into Porous ZnO-Based Cathode Buffer Layers

期刊

SMALL
卷 14, 期 15, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201704310

关键词

neutron and anomalous X-ray reflectivity; polymer solar cells; scattering contrast variation; vertical composition profile; ZnO-based cathode buffer layer

资金

  1. [2014B0001]

向作者/读者索取更多资源

Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC71BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC71BM more than that of the polymer. The deeper penetration of PC71BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据