4.8 Article

Formation of Uniform Water Microdroplets on Wrinkled Graphene for Ultrafast Humidity Sensing

期刊

SMALL
卷 14, 期 15, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201703848

关键词

graphene; humidity sensors; microdroplets; respiration; wrinkles

资金

  1. National Natural Science Foundation of China [51672150]
  2. Beijing Natural Science Foundation [2172027]

向作者/读者索取更多资源

Portable humidity sensors with ultrafast responses fabricated in wearable devices have promising application prospects in disease diagnostics, health status monitoring, and personal healthcare data collecting. However, prolonged exposures to high-humidity environments usually cause device degradation or failure due to excessive water adsorbed on the sensor surface. In the present work, a graphene film based humidity sensor with a hydrophobic surface and uniformly distributed ring-like wrinkles is designed and fabricated that exhibits excellent performance in breath sensing. The wrinkled morphology of the graphene sensor is able to effectively prevent the aggregation of water microdroplets and thus maximize the evaporation rate. The as-fabricated sensor responds to and recovers from humidity in 12.5 ms, the fastest response of humidity sensors reported so far, yet in a very stable manner. The sensor is fabricated into a mask and successfully applied to monitoring sudden changes in respiratory rate and depth, such as breathing disorder or arrest, as well as subtle changes in humidity level caused by talking, cough and skin evaporation. The sensor can potentially enable long-term daily monitoring of breath and skin evaporation with its ultrafast response and high sensitivity, as well as excellent stability in high-humidity environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据