4.7 Article

Enhanced Figure of Merit in Fano Resonance-Based Plasmonic Refractive Index Sensor

期刊

IEEE SENSORS JOURNAL
卷 15, 期 11, 页码 6313-6317

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2015.2455534

关键词

Surface plasmon; metal-insulator-metal (MIM); Fano resonance; finite difference time domain (FDTD); sensitivity; figure of merit

向作者/读者索取更多资源

Surface plasmon (SP) modes possesses an intriguing feature of confining light beyond diffraction limit, which makes it very attractive for sensing applications. Here, we theoretically investigated an ultra compact SP sensor using metal-insulatormetal (MIM) waveguide geometry. MIM waveguide is coupled to a pair of stub resonators and both the stub resonators are loaded with a metallic nanoslit of silver. The stubs and the MIM waveguide are filled with liquid/gaseous material which is to be sensed. The Fano resonance, which is very sensitive to any change in refractive index of the material, is excited in the structure by breaking marginal symmetry. The structure is numerically simulated by the finite difference time-domain method (FDTD), and the result shows that the resonance wavelength has a linear relation with refractive index of the material under sensing. In the optimum design of the proposed sensor, the maximum sensitivity is obtained as high as S = 1060 nm/refractive index unit with a large value of figure of merit (FOM = 176.7) and an ultra narrow linewidth Delta lambda = 6 nm. Thus, the device is well suited for designing on-chip optical sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据