4.6 Article

REMOTE ISCHEMIC POSTCONDITIONING IMPROVES MYOCARDIAL DYSFUNCTION VIA THE RISK AND SAFE PATHWAYS IN A RAT MODEL OF SEVERE HEMORRHAGIC SHOCK

期刊

SHOCK
卷 49, 期 4, 页码 460-465

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/SHK.0000000000000940

关键词

Hemorrhagic shock; ischemia reperfusion injury; myocardial dysfunction; remote ischemic postconditioning

资金

  1. project of Leading Talents in Pearl River Talent Plan of Guangdong Province [81000-42020004]

向作者/读者索取更多资源

Introduction: Patients who have been resuscitated after severe hemorrhagic shock still have a high mortality rate. Previously published literature has suggested that remote ischemic postconditioning (RIPostC) has a cardioprotective effect, but few studies have focused on RIPostC performed after severe hemorrhagic shock. In this study, we aim to explore the effects and mechanism of RIPostC on myocardial ischemia and reperfusion injuries after hemorrhagic shock. Methods: Fifty male rats were randomized into four groups: sham, control, remote ischemic per-conditioning (RIPerC), and RIPostC. Hemorrhagic shock was induced by removing 45% of the estimated total blood volume. Remote ischemic conditioning (RIC) was induced by four cycles of limb ischemia for 5 min followed by 5 min of reperfusion, during and after resuscitation for the RIPerC and RIPostC groups, respectively. Myocardial function, survival rate, IL-6, IL-10, and SOD were detected. Myocardial damage was histopathologically analyzed, and proteins related to the reperfusion injury salvage kinase (RISK) pathway (Akt, MEK, ERK1/2) and the survival activating factor enhancement (SAFE) pathway (STAT-3 and STAT5) were measured. Results: Compared with the control group, the ejection fraction and myocardial performance indexes were significantly better in both RIC groups 2 h after resuscitation. Myocardial damage was attenuated and survival time increased significantly in the RIC groups. IL-6 and cardiac troponin I (cTnI) levels were notably reduced in both RIC groups. Only RIPostC had significantly increased levels of SOD and IL-10. The SAFE and RISK pathways were activated by RIPostC, whereas the effect of RIPerC was not significant. Conclusions: RIPostC attenuated myocardial dysfunction and survival outcomes via the activation of the SAFE and RISK pathways in this rat model of hemorrhagic shock. RIPerC improves myocardial dysfunction, but might not do so via the SAFE and RISK pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据