4.7 Article

Direct contact membrane distillation for the treatment of industrial dyeing wastewater and characteristic pollutants

期刊

SEPARATION AND PURIFICATION TECHNOLOGY
卷 195, 期 -, 页码 83-91

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.seppur.2017.11.058

关键词

Direct contact membrane distillation; Industrial dyeing wastewater; Characteristic pollutants; Fouling

资金

  1. National Natural Science Foundation of China [51478099]
  2. National Key Research and Development Program of China [2016YFC0400501]
  3. Donghua University for the start-up grant [113-07-005710]

向作者/读者索取更多资源

In this work, the feasibility of utilizing direct contact membrane distillation (DCMD) for the treatment of industrial dyeing wastewater and their characteristic pollutants were demonstrated. Two commercial hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were comparatively studied. The results suggest that PTFE membrane always demonstrates enhanced flux and rejection performance for selected characteristic pollutants compared with that of PVDF counterpart, which can be ascribed to its enhanced hydrophobicity and reduced wettability. When challenging the industrial and synthetic dyeing wastewater, the DCMD system demonstrates different performances in terms of flux and rejection efficiency, which are closely related to the sample compositions and concentration. The relevant COD and color removal efficiency over 48 h continuous operation was, respectively, 90% and 94% for sample 1# (from discharge outlet of the dyeing vat wastewater), 96% and 100% for sample 2# (from discharge outlet of the wastewater treatment plant after physicochemical and biological treatment), and 89% and 100% for sample 3# (synthetic dyeing wastewater after bench-scale membrane bioreactor treatment). Furthermore, various advanced characterization techniques were employed to study the fouling properties and performance of the PTFE membrane. The suspended solids accumulation (e.g., SiO2 and dispersed dyes) may be responsible for the membrane wetting and fouling. These overall findings suggest that the DCMD process is a promising option for the treatment of dyeing wastewater with limited energy consumption and high performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据