4.7 Article

Branch-like NiO/ZnO heterostructures for VOC sensing

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 262, 期 -, 页码 477-485

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2018.02.042

关键词

Nickel oxide; Zinc oxide; Electron microscopy; Gas sensing; Heterostructures

资金

  1. European Community's 7th Framework Programme [611887]
  2. CERIC Consortium [20152072]

向作者/读者索取更多资源

We report for the first time on the synthesis of NiO/ZnO one-dimensional (1D) nanowire (NW) based heterostructures by applying a suitable methodology of transport and condensation. The synthesis involves, firstly the growth of NiO NWs on gold (Au) catalyzed alumina substrates using the vapor-liquid-solid (VLS) mechanism and then the formation of ZnO NWs directly on the NiO NWs using the vapor-solid (VS) mechanism. Sequential evaporation-condensation over Au-seeded alumina promotes the formation of NiO NWs, driven by the VLS growth mechanism. These NiO NWs act as backbones for the condensation of epitaxial ZnO nanostructures. The detailed morphological study of these heterostructures reveals that ZnO nanowires completely cover the whole NiO nanowires completely and growing out in the form of flat leaves from the NiO nanowire branches. The diameters of the NiO NWs have been found to vary from 15 nm to 60 nm. Selected area electron diffraction data (SAED) indicate an epitaxial growth of ZnO nanowires along (101)-planes on the strongly oriented NiO nanowires along (200) crystallographic planes. Finally, NiO NW and NiO/ZnO heterostructure based conductometric gas sensing devices have been fabricated and the comparison between their sensing performances have been compared. Interestingly, NiO/ZnO NWs heterostructure based sensing devices shows superior performance compared to NiO sensors toward volatile organic compounds (VOC). (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据