4.7 Article

Simple one-pot polyol synthesis of Pd nanoparticles, TiO2 microrods and reduced graphene oxide ternary composite for sensing NH3 gas at room temperature

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 254, 期 -, 页码 1125-1132

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2017.07.199

关键词

One-pot polyol synthesis; Pd NPs; TiO2 microrods (TiO2 MRs); Reduced graphene oxide (RGO); Ternary composite; Room-temperature sensor

资金

  1. Ministry of Science and Technology of Taiwan [MOST 105-2113-M-034-001]

向作者/读者索取更多资源

Pd nanoparticles (Pd NPs), TiO2 microrods (TiO2 MRs) and reduced graphene oxide (RGO) ternary composite (Pd NPs/TiO2 MRs/RGO) film were fabricated by one-pot polyol, followed by annealing, to yield two morphologies of MRS and NPs. The NH3 gas-sensing properties of Pd NPs/TiO2 MRs/RGO film at room-temperature were investigated. The morphology, phase composition and crystalline structure of Pd NPs/TiO2 MRs/RGO ternary composite films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Microstructural observations revealed that the Pd NPs and interconnected TiO2 MRs randomly adhered to the surface of RGO. Comparative gas sensing results revealed that the sensor that was based on the Pd NPs/TiO2 MRs/RGO ternary composite film responded much more strongly to NH3 gas at room temperature than did that based on TiO2 MRs and TiO2 MRs/RGO films, revealing the contribution of RGO and Pd NPs to NH3 gas-sensing capacity. Most importantly, the sensor that was made of the Pd NPs/TiO2 MRs/RGO ternary composite film responded strongly to low concentrations of NH3 gas at room temperature; its use is practical because of its ease of fabrication. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据