4.6 Review

Cadherin-11 promotes neural crest cell spreading by reducing intracellular tension-Mapping adhesion and mechanics in neuralcrest explants by atomic force microscopy

期刊

SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY
卷 73, 期 -, 页码 95-106

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.semcdb.2017.08.058

关键词

Neural crest; Cadherin-11; AFM; Single-cell force spectroscopy; Cell elasticity; Collective cell migration; Xenopus

资金

  1. subproject E2.4 of the DFG-Center for Functional Nanostructures
  2. Deutsche Forschungsgemeinschaft (DFG) through the DFG-FOR 1756 program [KA 4104/1-2, FR 2107/2-1]

向作者/读者索取更多资源

During development cranial neural crest cells (NCCs) display a striking transition from collective to single cell migration, but the mechanisms enabling individual NCCs to separate from the neural crest tissue are still incompletely understood. In this study we have employed atomic force microscopy (AFM) to investigate potential adhesive and mechanical changes associated with the dissociation of individual cells from cohesive Xenopus NCC explants at early stages of migration. AFM-based single-cell force spectroscopy (SCFS) revealed a uniform distribution of cell-cell adhesion forces within NCC explants, including semi-detached leader cells in the process of delaminating from the explant edge. This suggested that dissociation from the cell sheet may not require prior weakening of cell-cell contacts. However, mapping NCC sheet elasticity by AFM microbead indentation demonstrated strongly reduced cell stiffness in semi-detached leader cells compared to neighbouring cells in the NCC sheet periphery. Reduced leader cell stiffness coincided with enhanced cell spreading and high substrate traction, indicating a possible mechano-regulation of leader cell delamination. In support, AFM elasticity measurements of individual NCCs in optical side view mode demonstrated that reducing cell tension by inhibiting actomyosin contractility induces rapid spreading, possibly maximizing cell-substrate interactions as a result. Depletion of cadherin-11, a classical cadherin with an essential role in NCC migration and substrate adhesion, prevented the tension reduction necessary for NCC spreading, both in individual cells and at the edge of explanted sheets. In contrast, overexpression of cadherin-11 accelerated spreading of both individual cells and delaminating leader cells. As cadherin-11 expression increases strongly during NCC migration, this suggests an important role of cadherin-11 in regulating NCC elasticity and spreading at later stages of NCC migration. We therefore propose a model in which high tension at the NCC sheet periphery prevents premature NCC spreading and delamination during early stages of migration, while a cadherin11-dependent local decrease in cell tension promotes leader cell spreading and delamination at later stages of migration. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据