4.7 Article

Multi 'omics comparison reveals metabolome biochemistry, not microbiome composition or gene expression, corresponds to elevated biogeochemical function in the hyporheic zone

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 642, 期 -, 页码 742-753

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2018.05.256

关键词

FT-ICR-MS; Respiration; Coupled C-N cycling; Carbon cycle; Riparian; Hydrobiogeochemistry

资金

  1. U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of Subsurface Biogeochemical Research Program's Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL)
  2. DOE [DE-AC06-76RLO 1830]

向作者/读者索取更多资源

Biogeochemical hotspots are pervasive at terrestrial-aquatic interfaces, particularly within groundwater-surface water mixing zones (hyporheic zones), and they are critical to understanding spatiotemporal variation in biogeochemical cycling. Here, we use multi 'omic comparisons of hotspots to low-activity sediments to gain mechanistic insight into hyporheic zone organic matter processing. We hypothesized that microbiome structure and function, as described by metagenomics and metaproteomics. would distinguish hotspots from low-activity sediments by shifting metabolism towards carbohydrate-utilizing pathways and elucidate discrete mechanisms governing organic matter processing in each location. We also expected these differences to be reflected in the metabolome, whereby hotspot carbon (C) pools and metabolite transformations therein would be enriched in sugar associated compounds. In contrast to expectations, we found pronounced phenotypic plasticity in the hyporheic zone microbiome that was denoted by similar microbiome structure, functional potential, and expression across sediments with dissimilar metabolic rates. Instead, diverse nitrogenous metabolites and biochemical transformations characterized hotspots. Metabolomes also corresponded more strongly to aerobic metabolism than bulk C or N content only (explaining 67% vs. 42% and 37% of variation respectively), and bulk C and N did not improve statistical models based on metabolome composition alone. These results point to organic nitrogen as a significant regulatory factor influencing hyporheic zone organic matter processing. Based on our findings, we propose incorporating knowledge of metabolic pathways associated with different chemical fractions of C pools into ecosystem models will enhance prediction accuracy. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据