4.7 Article

Trace organic contaminant (TOrC) mixtures in Minnesota littoral zones: Effects of on-site wastewater treatment system (OWTS) proximity and biological impact

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 626, 期 -, 页码 1157-1166

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.01.123

关键词

Endocrine disruption; Diffuse sources; Lakes; Trace organic contaminant; Mixtures

资金

  1. Minnesota Environment and Natural Resources Trust Fund

向作者/读者索取更多资源

On-site wastewater treatment systems (OWTSs) are an international wastewater management strategy for rural and semi-rural communities without access to centralized sewage treatment. These systems are a suspected source of trace organic contaminants (TOrCs) that may be responsible for endocrine disrupting effects to resident fish species in Minnesota Lakes. This study assessed localized pore water concentrations of TOrCs in near-shore environments across five Minnesota Lakes. Sampling sites were designated as either likely (HOME) or unlikely (REF) to receive OWTS discharges based on their proximity to shoreline households. Sampling sites also served as sunfish spawning habitats concurrently studied for biological impacts to resident adult males. Two-group hypothesis tests demonstrated significantly (p = .02) higher total TOrC concentrations in HOME (Mean = 841 ng/L) versus REF (Mean = 222 ng/L) sites. HOME sites also contained a wider suite of TOrC detections relative to REF sites. The distance to the nearest household (most proximal distance; MPD) negatively correlated (r = -0.62) with total TOrC concentrations. However, 2,4-D and DEET were major contributors to these total concentrations, suggesting that anthropogenic influence from households may not be exclusively attributed to OWTS discharges. Further, TOrC presence and elevated nitrogen concentrations in REF site pore water suggest additional, non-household TOrC discharges to these lakes. Significantly higher blood concentrations of vitellogenin (p = .03) and 11-ketotestosterone (p = .01) were observed in adultmale sunfish captured from HOME versus REF sites. Comparisons between chemical and biological data indicate enhanced bioactive effects of co-contaminants. The findings from this study demonstrate multiple diffuse transport pathways contribute to the presence of biologically active TOrC mixtures in Minnesota Lakes, and mitigation efforts should consider minimizing residential inputs of chemicals associated with both outdoor and OWTS activity. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据