4.7 Article

Real-time detection of faecally contaminated drinking water with tryptophan-like fluorescence: defining threshold values

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 622, 期 -, 页码 1250-1257

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2017.11.162

关键词

Tryptophan-like fluorescence; Fluorescence spectroscopy; Faecal contamination; Drinking water; Thermotolerant (faecal) coliforms

资金

  1. UPGro Programme
  2. NERC [NE/002078/1, NE/M008606/1]
  3. Water For People, Canada
  4. UK EPSRC [EP/H003061/1]
  5. Natural Environment Research Council [bgs05007, NE/M021939/1, NE/L002078/1, 1818377] Funding Source: researchfish
  6. NERC [NE/L002078/1, bgs05007, NE/M021939/1] Funding Source: UKRI

向作者/读者索取更多资源

We assess the use of fluorescent dissolved organic matter at excitation-emission wavelengths of 280 nm and 360 nm, termed tryptophan-like fluorescence (TLF), as an indicator of faecally contaminated drinking water. A significant logistic regression model was developed using TLF as a predictor of thermotolerant coliforms (TTCs) using data from groundwater- and surface water-derived drinking water sources in India, Malawi, South Africa and Zambia. A TLF threshold of 1.3 ppb dissolved tryptophan was selected to classify TTC contamination. Validation of the TLF threshold indicated a false-negative error rate of 15% and a false-positive error rate of 18%. The threshold was unsuccessful at classifying contaminated sources containing < 10 TTC cfu per 100 mL, which we consider the current limit of detection. If only sources above this limit were classified, the false-negative error rate was very low at 4%. TLF intensity was very strongly correlated with TTC concentration (rho(s) = 0.80). A higher threshold of 6.9 ppb dissolved tryptophan is proposed to indicate heavily contaminated sources (= 100 TTC cfu per 100 mL). Current commercially available fluorimeters are easy-to-use, suitable for use online and in remote environments, require neither reagents nor consumables, and crucially provide an instantaneous reading. TLF measurements are not appreciably impaired by common intereferents, such as pH, turbidity and temperature, within typical natural ranges. The technology is a viable option for the real-time screening of faecally contaminated drinking water globally. (C) 2017 Natural Environment Research Council (NERC), as represented by the British Geological Survey (BGS). Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据