4.7 Article

Fate of di (2 ethylhexyl) phthalate in different soils and associated bacterial community changes

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 637, 期 -, 页码 460-469

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.05.055

关键词

Phthalate ester; Biodegradation; Metabolite; Bacterial community response

资金

  1. National Key Research and Development Program of China [2017YFA0207001]
  2. National Natural Science Foundation of China [41773125]
  3. Research Instrument Development Program of Chinese Academy of Sciences [YZ201638]
  4. 135 Research Program of Chinese Academy of Sciences [ISSAS2016]

向作者/读者索取更多资源

Di (2 ethylhexyl) phthalate (DEHP) is a ubiquitous organic pollutant, which has caused considerable pollution in arable soils. In this study, the relationship between DEHP degradation potential and soil properties in 12 agricultural soils (S1-S12) was examined in a microcosm based experiment. Six of these soils were then selected to monitor patterns in bacterial community responses. It was found that DEHP degradation was positively correlated with bacterial counts in the original soils, suggesting a key role for bacteria in degradation. However, DEHP metabolism did not always lead to complete degradation. Its monoester metabolite, mono (2 ethylhexyl) phthalate (MEHP), was present at appreciable levels in the two acidic soils (S1 and S2) during the incubation period of 35 days. Based on high-throughput sequencing data, we observed a greater impact of DEHP contamination on bacterial community structure in acidic soils than in the other soils. Nocardioides, Ramlibacter and unclassified Sphingomonadaceae were enriched in the two near-neutral soils where degradation was highest (S4 and S7), suggesting that these organisms might be efficient degraders. The relative abundance of Tumibacillus was greatly reduced in 50% of the six soils examined, demonstrating a high sensitivity to DEHP contamination. Furthermore, putative organic-matter decomposing bacteria (including Tumebacillus and other bacteria taxa such as members from Micromonosporaceae) were greatly reduced in the two acidic soils (S1 and S2), possibly due to the accumulation of MEHP. These results suggest a crucial role of soil acidity in determining the fate and impact of DEHP in soil ecosystems, which deserves further investigation. This work contributes to a better understanding of the environmental behavior of DEHP in soil and should facilitate the development of appropriate remediation technologies. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据