4.7 Article

Influence of humic substances and iron and aluminum ions on the sorption of acetamiprid to an arable soil

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 615, 期 -, 页码 1478-1484

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.09.120

关键词

Soil; Sorption; Neonicotinoid pesticide; Acetamiprid; Humic substances; Cation bridging

向作者/读者索取更多资源

Humic substances (HS) in soil and sediments, and surface water influence the behavior of organic xenobiotics in the environment. However, our knowledge of the effects of specific HS fractions, i.e., humic acids (HAs), fulvic acids (FAs), and humin (HM), on the sorption of organic xenobiotics is limited. The neonicotinoid insecticide acetamiprid is thought to contribute to the collapse of honeybee colonies. To understand the role that soil organic matter plays in the fate of acetamiprid, interactions between acetamiprid and the above HS fractions were examined. Batch experiments were conducted using various combinations of a field soil sample and the above 3 HS fractions prepared from the same soil, and differences in isotherm values for acetamiprid sorption were investigated based on the structural differences among the HS fractions. The sorption of acetamiprid to soil minerals associated with HM (MHM) (Freundlich isotherm constant, K-f:6.100) was reduced when HAs or FAs were added (K-f:4.179 and 4.756, respectively). This can be attributed to hydrophobic interactions between HM and HAs or FAs in which their dissociated carboxyl and phenolic groups become oriented to face the soil solution. The amount of acetamiprid that was adsorbed to (MHM + HA) or (MHM + FA) increased when aluminum ions were added (K-f:6.933 and 10.48, respectively), or iron ions were added (K-f:7.303 and 11.29, respectively). Since acetamiprid has no affinity for inorganic components in soil, the formation of HS-metal complexes by cation bridging may have oriented the hydrophobic moieties in the HAs or FAs to face the soil solution andmay also have resulted in the formation of dense structures, resulting in an increase in the amount of acetamiprid that becomes adsorbed to these structures. These results highlight the importance of interactions among soil components in the pedospheric diffusion of acetamiprid. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据