4.7 Article

Low temperature geothermal systems in carbonate-evaporitic rocks: Mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain)

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 615, 期 -, 页码 526-539

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.09.269

关键词

Low temperature geothermal system; Geochemical modelling; Geothermometry; Mineral equilibria; Dolomite order/disorder degree

资金

  1. Ministry of Education, Culture and Sports of Spain [FPU14/01523]

向作者/读者索取更多资源

Geothermometrical calculations in low-medium temperature geothermal systems hosted in carbonate-evaporitic rocks are complicated because 1) some of the classical chemical geothermometers are, usually, inadequate (since they were developed for higher temperature systems with different mineral-water equilibria at depth) and 2) the chemical geothermometers calibrated for these systems (based on the Ca and Mg or SO4 and F contents) are not free of problems either. The case study of the Arnedillo thermal system, a carbonate-evaporitic system of low temperature, will be used to deal with these problems through the combination of several geothermometrical techniques (chemical and isotopic geothermometers and geochemical modelling). The reservoir temperature of the Arnedillo geothermal system has been established to be in the range of 87 +/- 13 degrees C being the waters in equilibrium with respect to calcite, dolomite, anhydrite, quartz, albite, K-feldspar and other aluminosilicates. Anhydrite and quartz equilibria are highly reliable to stablish the reservoir temperature. Additionally, the anhydrite equilibrium explains the coherent results obtained with the delta O-18 anhydrite - water geothermometer. The equilibrium with respect to feldspars and other aluminosilicates is unusual in carbonate-evaporitic systems and it is probably related to the presence of detrital material in the aquifer. The identification of the expected equilibria with calcite and dolomite presents an interesting problem associated to dolomite. Variable order degrees of dolomite can be found in natural systems and this fact affects the associated equilibrium temperature in the geothermometrical modelling and also the results from the Ca-Mg geothermometer. To avoid this uncertainty, the order degree of the dolomite present in the Arnedillo reservoir has been determined and the results indicate 18.4% of ordered dolomite and 81.6% of disordered dolomite. Overall, the results suggest that thismulti-technique approach is very useful to solve some of the problems associated to the study of carbonate-evaporitic geothermal systems. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据