4.7 Article

Sludge disinfection using electrical thermal treatment: The role of ohmic heating

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 615, 期 -, 页码 262-271

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.09.175

关键词

Sewage sludge; Energy efficiency; Pathogen inactivation; E. coli; Maxwell-Eucken model; Effective medium theory

资金

  1. Bill and Melinda Gates Foundation [OPP 1111252]

向作者/读者索取更多资源

Electrical heating has been proposed as a potential method for pathogen inactivation in human waste sludge, especially in decentralized wastewater treatment systems. In this study, we investigated the heat production and E. coli inactivation in wastewater sludge using electrical thermal treatment. Various concentrations of NaCl and NH4Cl were tested as electrolyte to enhance conductivity in sludge mixtures. At same voltage input (18 V), sludge treated with direct current (DC) exhibited slower ascent of temperature and lower energy efficiencies for heat production comparing to that using alternate current (AC). However, DC power showed better performance in E. coli inactivation due to electrochemical inactivation in addition to thermal inactivation. Greater than 6log(10) removal of E. coli was demonstrated within 2 h using 0.15 M of NaCl as electrolyte by AC or DC power. The heat production in sludge was modeled using Maxwell-Eucken and effective medium theory based on the effective electrical conductivity in the two-phase (liquid and solid) sludge mixtures. The results showed that the water and heat loss is a critical consideration in modeling of sludge temperature using ohmic heating. The experimental data also suggested that the models are less applicable to DC power because the electrochemical reactions triggered by DC reduce the concentration of NH4+ and other ions that serve as electrolyte. The results of this study contribute to the development of engineering strategies for human waste sludge management. (C) 2017 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据