4.7 Article

Anaerobic degradation of sulfamethoxazole in mangrove sediments

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 643, 期 -, 页码 1446-1455

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2018.06.305

关键词

Sulfamethoxazole; Anaerobic degradation; Mangrove sediment

资金

  1. Ministry of Science and Technology, Taiwan, Republic of China [MOST 104-2313-B-031-001-MY3]

向作者/读者索取更多资源

The effects of sucrose and electron acceptors on the anaerobic degradation of sulfamethoxazole (SMX) in mangrove sediments were investigated in this study. Among three sulfonamides, sulfamethoxazole, sulfadimethoxine and sulfamethazine, only SMX could be completely degraded in mangrove sediments. Degradation of SMX was enhanced by the addition of sucrose to the sediments. The degradation rates of SMX were increased in bioreactor experiments with sucrose. The addition of electron acceptors (sodium hydrogen carbonate, sodium sulfate, and sodium nitrate) could further enhance SMX degradation. The order of anaerobic SMX degradation rates under three different conditions was as follows: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. Methanolobus, Desulfuromonas, and Thauera were found in the highest proportions among methanogens, sulfate-reducing bacteria and denitrifying bacteria, respectively. Achromobacter, Brevundimonas, Delftia, Idiomarina, Pseudomonas, and Rhodopirellula were the major bacterial communities responsible for SMX degradation in the sediment. Overall, 16 bacterial and archaeal genera were identified as the core microbial community facilitating anaerobic SMX degradation for all methanogenic, sulfate-reducing and nitrate-reducing conditions. The results of this study provide feasible methods for the removal of SMX from mangrove sediments. (C) 2018 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据