4.7 Article

Understanding the relationships between grazing intensity and the distribution of nitrifying communities in grassland soils

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 634, 期 -, 页码 1157-1164

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2018.04.117

关键词

Grazing intensity; Nitrifying community; Ammonia-oxidizing archaea/bacteria (AOA/AOB)

资金

  1. National Key Basic Research Program of China [2014CB138801]
  2. Natural Science Foundation of China [41671249]
  3. National Key Research Program of China [2016YFD0200302]

向作者/读者索取更多资源

Nitrifying microbes are of critical importance in regulating efficient nitrogen (N) cycling, which plays a crucial role in plant productivity and maintaining soil sustainability. Long-term different intensities of grazing can strongly influence the microbial communities, while our understanding of the complex nitrifying community in the grazed grassland soil environment is still limited. To investigate whether and how long-term grazing with different intensities influence soil nitrifying communities, high-throughput sequencing and quantitative PCR analyses were performed on soil samples from permanent grassland soils under four grazing intensities: 0 (G0), 1.5 (G1), 6 (G2) and 9 (G3) sheep ha(-1). Results showed that the G3 treatment significantly reduced the soil nutrient content and increased the soil bulk density, changes that are not sustainable in the long run. The G1 treatment, on the other hand, significantly increased the soil nutrient content andwould improve soil fertility. Some functional microbes were specifically enriched after long term grazing, like Nitrospirae (phylum) to Nitrospira (class) in the G2 samples and Chromatiales (order) to Nitrosococcus (genus) in the G3 soils. The numerically dominant Nitrosococcus watsonii lineage of ammonia oxidizing bacteria (AOB) was observed in this grassland soil. The redundancy analysis (RDA) together with the structural equation modeling (SEM) analysis showed that grazing intensity was important in mediating the distribution of soil microorganisms and affected nitrifying communities by impacting soil physicochemical characteristics (e.g., bulk density, NH4+-N). These results showed the shifts of nitrifying communities across different grazing intensities, and could aid in the determination of an optimal grazing intensity for these grazed grassland soils. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据