4.7 Article

Biochar and nitrate reduce risk of methylmercury in soils under straw amendment

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 619, 期 -, 页码 384-390

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.11.106

关键词

Paddy soil; Methylmercury; Straw return; Bioaccumulation; Rice

资金

  1. National Natural Science Foundation of China [41673075, 41571453]
  2. Natural Science Foundation of Jiangsu Province [BK20160067]

向作者/读者索取更多资源

There is growing evidence that incorporating crop straw into soils, which is being widely encouraged in many parts of the world, could increase net methylmercury (MeHg) production in soils and MeHg accumulation in crops. We explored the possibility of mitigating the risk of increased MeHg levels under straw amendment by transforming straw into biochar (BC). Greenhouse and batch experiments were conducted, in which soil MeHg concentrations, MeHg phytoavailability and accumulation in rice, dynamics of sulfate, nitrate and abundances of sulfate reducing bacteria (SRB) were compared in 'Control' (Hg contaminated soil), 'Straw' (soil with 1% rice straw), 'Straw + BC' (soil with 1% straw and 1% biochar), and 'Straw + BC + N' (soil with 1% straw, 1% biochar and 0.12% nitrate). Our results indicate that straw amendment increased MeHg concentrations in soils (28-136% higher) and rice plants (26% higher in grains, 'Straw' versus 'Control'), while co-application of biochar with straw reduced grain MeHg levels (60% lower, 'Straw + BC' versus 'Straw'). This could be mainly attributed to the reduced MeHg availability to rice plants (phytoavailability, extraction rates of MeHg by ammonium thiosulfate) under biochar amendment (64-99% lower, 'Straw+BC' versus 'Straw'). However, biochar amendment enhanced soil MeHg levels (5-75% higher, 'Straw + BC' versus 'Control'). Interestingly, nitrate addition helped reduce soil MeHg concentrations (11-41% lower, 'Straw + BC + N' versus 'Straw + BC') by facilitating nitrate reduction while inhibiting SRB activities. Subsequently, addition of nitrate with biochar, compared with biochar alone, further reduced grain MeHg levels by 34%. Therefore, straw biochar together with nitrate could possibly be effective in mitigating the risk of MeHg under straw amendment. Furthermore, the results evidence the impacts of straw management on the risk posed by MeHg in soils and emphasize the necessity to carefully consider the straw management policy in Hg-contaminated areas. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据