4.8 Article

Mechanistic origin and prediction of enhanced ductility in magnesium alloys

期刊

SCIENCE
卷 359, 期 6374, 页码 447-451

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aap8716

关键词

-

资金

  1. Swiss National Science Foundation [162350]
  2. EPFL

向作者/读者索取更多资源

Pure magnesium exhibits poor ductility owing to pyramidal < c + a > dislocation transformations to immobile structures, making this lowest-density structural metal unusable for many applications where it could enhance energy efficiency. We show why magnesium can be made ductile by specific dilute solute additions, which increase the < c + a > cross-slip and multiplication rates to levels much faster than the deleterious < c + a > transformation, enabling both favorable texture during processing and continued plastic straining during deformation. A quantitative theory establishes the conditions for ductility as a function of alloy composition in very good agreement with experiments on many existing magnesium alloys, and the solute-enhanced cross-slip mechanism is confirmed by transmission electron microscopy observations in magnesium-yttrium. The mechanistic theory can quickly screen for alloy compositions favoring conditions for high ductility and may help in the development of high-formability magnesium alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据