4.8 Article

Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease

期刊

SCIENCE
卷 360, 期 6390, 页码 758-763

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aar2131

关键词

-

资金

  1. NIH NIDDK [R01 DK076077, DK087635, DK105821, DP3 DK108220]
  2. American Diabetes Association Training [1-17-PDF-036]
  3. NIH [1U54DK104309-01, 2R01DK073462, UG3 DK114926-01]
  4. Columbia Precision Medicine Pilot Award

向作者/读者索取更多资源

Our understanding of kidney disease pathogenesis is limited by an incomplete molecular characterization of the cell types responsible for the organ's multiple homeostatic functions. To help fill this knowledge gap, we characterized 57,979 cells from healthy mouse kidneys by using unbiased single-cell RNA sequencing. On the basis of gene expression patterns, we infer that inherited kidney diseases that arise from distinct genetic mutations but share the same phenotypic manifestation originate from the same differentiated cell type. We also found that the collecting duct in kidneys of adult mice generates a spectrum of cell types through a newly identified transitional cell. Computational cell trajectory analysis and in vivo lineage tracing revealed that intercalated cells and principal cells undergo transitions mediated by the Notch signaling pathway. In mouse and human kidney disease, these transitions were shifted toward a principal cell fate and were associated with metabolic acidosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据