3.8 Proceedings Paper

ESTIMATING BIOMASS AND HEIGHT USING DSM FROM SATELLITE DATA AND DEM FROM HIGH-RESOLUTION LASER SCANNING DATA

出版社

IEEE
DOI: 10.1109/IGARSS.2012.6351211

关键词

Forest management; canopy height model; optical sensors

向作者/读者索取更多资源

In this study, dense hemi-boreal forest biomass and height estimation was investigated based on optical satellite data and a high quality Digital Elevation Model (DEM) from airborne laser scanning. This analysis was carried out on data collected 2008-2010 over the test site Remningstorp in southern Sweden. The optical sensors SPOT-5 HRS and ASTER were tested to process a Digital Surface Model (DSM), i.e. the vegetation height above mean sea level, that is used together with the DEM (derived from laser data) to calculate a Canopy Height Model (CHM) as the difference between the former ones. By modeling biomass and height using regression analysis on spectral data from SPOT-5 HRG and height metrics from the CHM an improved Root Mean Squared Error (RMSE) and adjusted R-2 is expected, compared to using the single data sources alone. The best results showed a relative RMSE for standwise prediction of mean biomass and height of 30.3% and 23.3%, respectively. Adding CHM data to a spectral based (HRG) prediction model improved the mapping accuracy roughly 3%. In conclusion, the estimation accuracy did not improve significantly by adding height metrics to spectral data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据