3.8 Proceedings Paper

Effect of Crystal Grain Size in Stainless Steel on Cutting Process in Micromilling

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.procir.2012.04.026

关键词

Milling; Micromachining; Burr

向作者/读者索取更多资源

The crystal grain size of the work material is relatively large compared to the removal depth in micro-scale cutting. Therefore, the micromilling requires the small crystal grains in the material to machine accurate products in a stable manner. The study investigates the effect of crystal grain size on the cutting process in micromilling. The crystal grains of stainless steel in this study are downsized to an average size of 1.5 mu m by repetition of material forming and phase transformation. The milling processes of ultra fine-grained steels were compared with those of normal grain steels. The milling tests were performed to measure the cutting force and the surface quality. The force component ratio of the ultra fine-grained steel is higher than that of the normal grain steel. The shearing force decreases in cutting of the ultra fine-grained steel; meanwhile, the friction and/or the indentation forces increase. Burr formation can be reduced with the crystal grain size. In cutting of the normal grain steel, thrust component in the cutting force suddenly drops near the end of the grooves and a large burr is left on the edge of the groove. (C) 2012 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Konrad Wegener

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据