4.5 Article

Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age

期刊

SOLID EARTH
卷 3, 期 2, 页码 467-488

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/se-3-467-2012

关键词

-

资金

  1. CNRS-INSU SYSTER program

向作者/读者索取更多资源

The properties of the subduction interplate domain are likely to affect not only the seismogenic potential of the subduction area but also the overall subduction process, as it influences its viability. Numerical simulations are performed to model the long-term equilibrium state of the subduction interplate when the diving lithosphere interacts with both the overriding plate and the surrounding convective mantle. The thermomechanical model combines a non-Newtonian viscous rheology and a pseudo-brittle rheology. Rock strength here depends on depth, temperature and stress, for both oceanic crust and mantle rocks. I study the evolution through time of, on one hand, the brittle-ductile transition (BDT) depth, z(BDT), and, on the other hand, of the kinematic decoupling depth, z(dec), simulated along the subduction interplate. The results show that both a high friction and a low ductile strength at the asthenospheric wedge tip shallow z(BDT). The influence of the weak material activation energy is of second order but not negligible. z(BDT) becomes dependent on the ductile strength increase with depth (activation volume) if the BDT occurs at the interplate decoupling depth. Regarding the interplate decoupling depth, it is shallowed (1) significantly if mantle viscosity at asthenospheric wedge tip is low, (2) if the difference in mantle and interplate activation energy is weak, and (3) if the activation volume is increased. Very low friction coefficients and/or low asthenospheric viscosities promote z(BDT) = z(dec). I then present how the subducting lithosphere age affects the brittle-ductile transition depth and the kinematic decoupling depth in this model. Simulations show that a rheological model in which the respective activation energies of mantle and interplate material are too close hinders the mechanical decoupling at the down-dip extent of the interplate, and eventually jams the subduction process during incipient subduction of a young (20-Myr-old) and soft lithosphere under a thick upper plate. Finally, both the BDT depth and the decoupling depth are a function of the subducting plate age, but are not influenced in the same fashion: cool and old subducting plates deepen the BDT but shallow the interplate decoupling depth. Even if BDT and kinematic decoupling are intrinsically related to different mechanisms of deformation, this work shows that they are able to interact closely. Comparison between modelling results and observations suggests a minimum friction coefficient of 0.045 for the interplate plane, even 0.069 in some cases, to model realistic BDT depths. The modelled z(dec) is a bit deeper than suggested by geophysical observations. Eventually, the better way to improve the adjustment to observations may rely on a moderate to strong asthenosphere viscosity reduction in the metasomatised mantle wedge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据