4.5 Article

Fabrication of microfluidic cavities using Si-to-glass anodic bonding

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 89, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5031837

关键词

-

资金

  1. NSF at Cornell [DMR1202991, DMR1664043, DMR1708341]
  2. NSF at Royal Holloway from the EPSRC [EP/J022004/1]
  3. European Microkelvin Platform
  4. EPSRC [EP/J022004/1] Funding Source: UKRI

向作者/读者索取更多资源

We demonstrate the fabrication of similar to 1.08 mu m deep microfluidic cavities with characteristic size as large as 7 mm x 11 mm or 11 mm diameter, using a silicon-glass anodic bonding technique that does not require posts to act as separators to define cavity height. Since the phase diagram of 3He is significantly altered under confinement, posts might act as pinning centers for phase boundaries. The previous generation of cavities relied on full wafer-bonding which is more prone to failure and requires dicing post-bonding, whereas these cavities are made by bonding a pre-cut piece of Hoya SD-2 glass to a patterned piece of silicon in which the cavity is defined by etching. Anodic bonding was carried out at 425 degrees C with 200 V, and we observe that pressurizing the cavity to failure (>30 bars pressure) results in glass breaking, rather than the glass-silicon bond separation. In this article, we discuss the detailed fabrication of the cavity, its edges, and details of the junction between the coin silver fill line and the silicon base of the cavity that enables a low internal-friction joint. This feature is important for mass coupling torsional oscillator experimental assays of the superfluid inertial contribution where a high quality factor (Q) improves frequency resolution. The surface preparation that yields well-characterized smooth surfaces to eliminate pinning sites, the use of transparent glass as a cover permitting optical access, low temperature capability, and attachment of pressure-capable ports for fluid access may be features that are important in other applications. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据