4.7 Article

CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings

期刊

RENEWABLE ENERGY
卷 118, 期 -, 页码 502-520

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2017.11.032

关键词

Wind tower; Natural ventilation; Wind-driven ventilation; Indoor air quality (IAQ); Age of air; Ventilation efficiency

资金

  1. Research Foundation - Flanders (FWO) [FWO 12M5316N]

向作者/读者索取更多资源

Cross-ventilation using rooftop wind-catchers is very complex as it is influenced by a wide range of interrelated factors including aerodynamic characteristics of the wind catcher, approach-flow conditions and building geometry. Earlier studies on wind-driven cross-ventilation in buildings have shown the significant impact of the geometry and position of openings on the flow and ventilation performance. However, this has not yet been investigated for cross-ventilation using wind catchers. This paper, therefore, presents a detailed evaluation of the impact of the outlet openings on the ventilation performance of a single-zone isolated building with a wind catcher. The evaluation is based on three ventilation performance indicators: (i) induced airflow rate, (ii) age of air, and (iii) air change efficiency. High-resolution coupled 3D steady RANS CFD simulations Of cross-ventilation are performed for different sizes and types of outlet openings. The CFD simulations are validated based on wind-tunnel measurements. The results show that using outlet openings very close to the wind catcher will not increase the induced airflow, while it leads to a considerable reduction in the indoor air quality. A combination of one-sided wind-catcher and window is superior, while the use of two-sided wind-catchers leads to the lowest indoor air quality and air change efficiency. (C) 2017 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据