4.7 Article

Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment

期刊

RENEWABLE ENERGY
卷 129, 期 -, 页码 500-512

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2018.06.006

关键词

Wave energy conversion; Viscosity influence; State-space model; Three-dimensional CFD; Physical experiment

资金

  1. China Scholarship Council
  2. University of Hull
  3. Hull University flume tank

向作者/读者索取更多资源

To achieve optimal power in a wave energy conversion (WEC) system it is necessary to understand the device hydrodynamics. To maximize conversion efficiency the goal is to tune the WEC performance into resonance. The main challenge then to be overcome is the degree to which non-linearity in WEC hydrodynamics should be represented. Although many studies use linear models to describe WEC hydrodynamics, this paper aims to show that the non-linear viscosity should be carefully involved. To achieve this an investigation into the hydrodynamics of a designed 1/50 scale point absorber wave energy converter (PAWEC) in heave motion only is implemented to indicate the non-linear viscosity effect. A non-linear state-space model (NSSM) considering a quadratic viscous term is used to simulate PAWEC behaviors. The non-linear model is compared with the linear counterpart, and validated by computational fluid dynamics (CFD) and experimental data. A conclusion is drawn that the non-linear PAWEC hydrodynamics (including amplitude and phase responses, conversion efficiency) close to resonance or at high wave heights can only be described realistically when the non-linear viscosity is correctly taken into account. Inaccuracies in its representation lead to significant errors in the tuning procedure which over-predict the dynamic responses and weaken the control system performance. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据