4.7 Article

An object-based convolutional neural network (OCNN) for urban land use classification

期刊

REMOTE SENSING OF ENVIRONMENT
卷 216, 期 -, 页码 57-70

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2018.06.034

关键词

Convolutional neural network; OBIA; Urban land use classification; VFSR remotely sensed imagery; High-level feature representations

资金

  1. PhD studentship Deep Learning in massive area, multi-scale resolution remotely sensed imagery [EAA7369]
  2. Ordnance Survey
  3. Lancaster University

向作者/读者索取更多资源

Urban land use information is essential for a variety of urban-related applications such as urban planning and regional administration. The extraction of urban land use from very fine spatial resolution (VFSR) remotely sensed imagery has, therefore, drawn much attention in the remote sensing community. Nevertheless, classifying urban land use from VFSR images remains a challenging task, due to the extreme difficulties in differentiating complex spatial patterns to derive high-level semantic labels. Deep convolutional neural networks (CNNs) offer great potential to extract high-level spatial features, thanks to its hierarchical nature with multiple levels of abstraction. However, blurred object boundaries and geometric distortion, as well as huge computational redundancy, severely restrict the potential application of CNN for the classification of urban land use. In this paper, a novel object-based convolutional neural network (OCNN) is proposed for urban land use classification using VFSR images. Rather than Pixel-wise convolutional processes, the OCNN relies on segmented objects as its functional units, and CNN networks are used to analyse and label objects such as to partition within-object and between-object variation. Two CNN networks with different model structures and window sizes are developed to predict linearly shaped objects (e.g. Highway, Canal) and general (other non-linearly shaped) objects. Then a rule-based decision fusion is performed to integrate the class-specific classification results. The effectiveness of the proposed OCNN method was tested on aerial photography of two large urban scenes in Southampton and Manchester in Great Britain. The OCNN combined with large and small window sizes achieved excellent classification accuracy and computational efficiency, consistently outperforming its sub-modules, as well as other benchmark comparators, including the Pixel-wise CNN, contextual-based MRF and object-based OBIA-SVM methods. The proposed method provides the first object-based CNN framework to effectively and efficiently address the complicated problem of urban land use classification from VFSR images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据