4.7 Article

Resilience-based network design under uncertainty

期刊

RELIABILITY ENGINEERING & SYSTEM SAFETY
卷 169, 期 -, 页码 364-379

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ress.2017.09.009

关键词

Resilience; Networks; Recovery; Design optimization; Uncertainty

资金

  1. NASA Ames Research Center
  2. Air Force Office of Scientific Research [FA9550-15-1-0018]

向作者/读者索取更多资源

This paper introduces an approach to quantify resilience for the design of systems that can be described as a network. A key characteristic of resilience is the ability of restoring functionality and performance in response to a disruptive event. Therefore, the restoration behavior is encapsulated via a non-linear function that provides the ability to model at the component level more refined attributes of restoration. In particular, it considers the remaining capacity (absorptive ability), the degree to which capability can be recovered (restoration ability) and the recovery speed. The component restoration functions can then be used to impose a resilience target at a given time as a design constraint. The resilience-based design optimization is then formulated for both deterministic and stochastic cases of a network system. The objective is to have as the design solution a network that incurs the least cost while meeting system resilience constraints. Maximum flow through the network is used as a measure of system performance. Several possible links are examined with regards to flow performance from origin node to a destination node. A probabilistic solution discovery algorithm is combined with stochastic ranking to approach this problem. Two numerical examples are used to illustrate the procedure and the effectiveness of the proposed method. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据