4.2 Article

Rapamycin Confers Neuroprotection Against Aging-Induced Oxidative Stress, Mitochondrial Dysfunction, and Neurodegeneration in Old Rats Through Activation of Autophagy

期刊

REJUVENATION RESEARCH
卷 22, 期 1, 页码 60-70

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/rej.2018.2070

关键词

aging; autophagy; rapamycin; neuroinflammation; neuroprotection; oxidative stress

资金

  1. University Grant Commission, New Delhi, India [F.4-2/2006(BSR)/BL/14-15/0326]
  2. FIST grant of DST-SERB, Government of India
  3. DRS-SAP grant of University Grants Commission, New Delhi

向作者/读者索取更多资源

Brain aging is an intricate and natural phenomenon exclusively characterized by oxidative stress, accumulation of oxidatively damaged macromolecules, and alterations in structure and function of neurons that further increase the risk factor for most of the neurodegenerative diseases. In addition, age-dependent defective autophagy has also been implicated to favor the pathogenesis and prevalence of the neurological diseases. Therefore, the development of strategies that delay aging and the concomitant neurological disorders remain elusive. Thus, the present study was undertaken to investigate the effect of rapamycin-induced activation of autophagy on aging-related oxidative stress, cell death, neuroinflammation, and neurodegeneration in rat brain. Our data demonstrated the significant age-related oxidative stress, apoptotic cell death, elevated inflammatory response, and reduced level of markers associated with rejuvenation and neural integrity, including the activities of ion channel transporters (Na+/K+-ATPase and Ca2+-ATPase) and acetylcholinesterase in the brain of old aged rats. Furthermore, rapamycin (0.5 mg/kg b.w. for 28 days) induced activation of autophagy provided significant protection to aging rat brain by reducing the aging-induced oxidative stress, apoptotic cell death, and markers of neurodegeneration. Thus, our data confirmed that autophagy plays a pivotal role in delaying brain aging plausibly by maintaining the cellular homeostasis, and structural and functional integrity of cells in the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据