4.4 Article

Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry

期刊

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
卷 32, 期 15, 页码 1287-1295

出版社

WILEY
DOI: 10.1002/rcm.8165

关键词

-

资金

  1. National Science Foundation, Division of Chemistry
  2. Division of Molecular and cellular Biosciences [CHE-1654274HRD-1547798]

向作者/读者索取更多资源

RationaleThere is a need for fast, post-ionization separation during the analysis of complex mixtures. In this study, we evaluate the use of a high-resolution mobility analyzer with high-resolution and ultrahigh-resolution mass spectrometry for unsupervised molecular feature detection. Goals include the study of the reproducibility of trapped ion mobility spectrometry (TIMS) across platforms, applicability range, and potential challenges during routine analysis. MethodsA TIMS analyzer was coupled to time-of-flight mass spectrometry (TOF MS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) instruments for the analysis of singly charged species in the m/z 150-800 range of a complex mixture (Suwannee River Fulvic Acid Standard). Molecular features were detected using an unsupervised algorithm based on chemical formula and IMS profiles. ResultsTIMS-TOF MS and TIMS-FT-ICR MS analysis provided 4950 and 7760m/z signals, 1430 and 3050 formulas using the general CxHyN0-3O0-19S0-1 composition, and 7600 and 22 350 [m/z; chemical formula; K; CCS] features, respectively. ConclusionsTIMS coupled to TOF MS and FT-ICR MS showed similar performance and high reproducibility. For the analysis of complex mixtures, both platforms were able to capture the major trends and characteristics; however, as the chemical complexity at the level of nominal mass increases with m/z (m/z >300-350), only TIMS-FT-ICR MS was able to report the lower abundance compositional trends.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据