4.7 Article

On the parallelization of atmospheric inversions of CO2 surface fluxes within a variational framework

期刊

GEOSCIENTIFIC MODEL DEVELOPMENT
卷 6, 期 3, 页码 783-790

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/gmd-6-783-2013

关键词

-

资金

  1. French Agence Nationale pour la Recherche (project PREVASSEMBLE)
  2. European Commission under EU Seventh Research Framework Programme [283576]
  3. CNRS-INSU

向作者/读者索取更多资源

The variational formulation of Bayes' theorem allows inferring CO2 sources and sinks from atmospheric concentrations at much higher time-space resolution than the ensemble or analytical approaches. However, it usually exhibits limited scalable parallelism. This limitation hinders global atmospheric inversions operated on decadal time scales and regional ones with kilometric spatial scales because of the computational cost of the underlying transport model that has to be run at each iteration of the variational minimization. Here, we introduce a physical parallelization (PP) of variational atmospheric inversions. In the PP, the inversion still manages a single physically and statistically consistent window, but the transport model is run in parallel overlapping sub-segments in order to massively reduce the computation wall-clock time of the inversion. For global inversions, a simplification of transport modelling is described to connect the output of all segments. We demonstrate the performance of the approach on a global inversion for CO2 with a 32 yr inversion window (1979-2010) with atmospheric measurements from 81 sites of the NOAA global cooperative air sampling network. In this case, we show that the duration of the inversion is reduced by a seven-fold factor (from months to days), while still processing the three decades consistently and with improved numerical stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据