4.6 Article

Unravelling the relative roles of physical processes in modelling the life cycle of a warm radiation fog

期刊

出版社

WILEY
DOI: 10.1002/qj.3300

关键词

Cabauw; land-atmosphere coupling; microphysics; radiation fog; stable boundary layer; turbulent mixing; WRF

资金

  1. Nederlandse Organisatie voor Wetenschappelijk Onderzoek [863.10.010]
  2. NWO

向作者/读者索取更多资源

This study evaluates the representation of the life cycle of a radiation fog case-study observed at the Cabauw 213 m tower (Netherlands) facility by the Weather Research and Forecasting (WRF) single-column model, and aims to advance the understanding of the model behaviour, which will assist in setting research priorities for the future. First an ensemble of 16 WRF configurations that vary in parametrization schemes for the planetary boundary layer, land surface, long-wave radiation, and microphysics are evaluated. Next, we perform a sensitivity study to examine which physical process is most crucial in modelling the fog, i.e. soil heat diffusivity, the CO2 concentration (representing clear-sky long-wave radiation), the vapour diffusion to droplets, and the turbulent mixing. Subsequently, we study whether these perturbations can improve the model representation, and on the other hand whether they can explain the model behaviour of the 16 ensemble members. Results are displayed in process diagrams. We find that the behaviour of the ensemble can be explained by variations in the soil heat diffusivity and the turbulent mixing. However, their sensitivities orient in approximately the same direction, and as such, errors in the formulation of the boundary-layer scheme can be hidden by compensating errors in the land-surface scheme. In addition, we find that simultaneous perturbations in the soil heat diffusivity and turbulent mixing do not result in the same results as superposing the individual perturbations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据