4.7 Article

Spectral Unmixing of Hyperspectral Imagery Using Multilayer NMF

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LGRS.2014.2325874

关键词

Hyperspectral imaging; multilayer NMF (MLNMF); nonnegative matrix factorization (NMF); sparseness constraint; spectral unmixing

向作者/读者索取更多资源

Hyperspectral images contain mixed pixels due to low spatial resolution of hyperspectral sensors. Spectral unmixing problem refers to decomposing mixed pixels into a set of endmembers and abundance fractions. Due to nonnegativity constraint on abundance fractions, nonnegative matrix factorization (NMF) methods have been widely used for solving spectral unmixing problem. In this letter we proposed using multilayer NMF (MLNMF) for the purpose of hyperspectral unmixing. In this approach, spectral signature matrix can be modeled as a product of sparse matrices. In fact MLNMF decomposes the observation matrix iteratively in a number of layers. In each layer, we applied sparseness constraint on spectral signature matrix as well as on abundance fractions matrix. In this way signatures matrix can be sparsely decomposed despite the fact that it is not generally a sparse matrix. The proposed algorithm is applied on synthetic and real data sets. Synthetic data is generated based on endmembers from U. S. Geological Survey spectral library. AVIRIS Cuprite data set has been used as a real data set for evaluation of proposed method. Results of experiments are quantified based on SAD and AAD measures. Results in comparison with previously proposed methods show that the multilayer approach can unmix data more effectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据