4.6 Article

Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation

期刊

PROTEIN SCIENCE
卷 27, 期 9, 页码 1636-1650

出版社

WILEY
DOI: 10.1002/pro.3451

关键词

lytic polysaccharide monooxygenase; histidine; methylation; hydrogen peroxide; Thermoascus aurantiacus

资金

  1. Norges Forskningsrad [226244, 243663]

向作者/读者索取更多资源

The catalytically crucial N-terminal histidine (His1) of fungal lytic polysaccharide monooxygenases (LPMOs) is post-translationally modified to carry a methylation. The functional role of this methylation remains unknown. We have carried out an in-depth functional comparison of two variants of a family AA9 LPMO from Thermoascus aurantiacus (TaLPMO9A), one with, and one without the methylation on His1. Various activity assays showed that the two enzyme variants are identical in terms of substrate preferences, cleavage specificities and the ability to activate molecular oxygen. During the course of this work, new functional features of TaLPMO9A were discovered, in particular the ability to cleave xyloglucan, and these features were identical for both variants. Using a variety of techniques, we further found that methylation has minimal effects on the pK(a) of His1, the affinity for copper and the redox potential of bound copper. The two LPMOs did, however, show clear differences in their resistance against oxidative damage. Studies with added hydrogen peroxide confirmed recent claims that low concentrations of H2O2 boost LPMO activity, whereas excess H2O2 leads to LPMO inactivation. The methylated variant of TaLPMO9A, produced in Aspergillus oryzae, was more resistant to excess H2O2 and showed better process performance when using conditions that promote generation of reactive-oxygen species. LPMOs need to protect themselves from reactive oxygen species generated in their active sites and this study shows that methylation of the fully conserved N-terminal histidine provides such protection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据