4.6 Article

Protein-protein interactions controlling interfacial aggregation of rhIL-1ra are not described by simple colloid models

期刊

PROTEIN SCIENCE
卷 27, 期 7, 页码 1191-1204

出版社

WILEY
DOI: 10.1002/pro.3382

关键词

protein aggregation; protein stability; interfaces; protein formulation strategy; protein interactions; interfacial shear rheology; protein adsorption; electrostatic forces

资金

  1. National Institutes of Health [RO1 EB006006]

向作者/读者索取更多资源

We investigated the effects of protein-protein interaction strength on interfacial viscoelastic properties and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) at silicone oil-water interfaces. Osmotic second virial coefficients determined by static light scattering were used to quantify protein-protein interactions in bulk solution. Attractive protein-protein interactions dominated at low ionic strengths and their magnitude decreased with increasing ionic strength, in contrast to repulsive interactions that would be expected based on uniformly charged sphere models. Interfacial shear rheometry was used to characterize rhIL-1ra interfacial layers. More attractive protein-protein interactions in bulk solution correlated with stronger interfacial gels. Thioflavin-T fluorescence measurements indicated that the intermolecular -sheet content of rhIL-1ra incubated in the presence of silicone oil-water interfaces correlated with gel strength. Siliconized syringes were used to probe the effects of mechanical perturbation of the interfacial gel layers. When rhIL-1ra solutions in siliconized glass syringes were subjected to end-over-end rotation, monomeric rhIL-1ra was lost from solution, and particles containing aggregated protein were released into the bulk aqueous phase. The loss of monomeric rhIL-1ra in response to mechanical perturbation was highest under the conditions where the strongest gels were observed. Aggregation of rhIL-1ra was strictly interface-induced and growth of aggregates in the bulk solution was not observed, even in the presence of particles released from silicone oil-water interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据