4.8 Review

A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel plus air mixtures

期刊

PROGRESS IN ENERGY AND COMBUSTION SCIENCE
卷 68, 期 -, 页码 197-267

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pecs.2018.05.003

关键词

-

资金

  1. Centre for Combustion Science and Technology (CECOST)
  2. Swedish Research Council (VR) [2015-04042]
  3. SERB, Department of Science and Technology, Government of India [YSS_2015_000007, SB/S3/COMB-001/2014]
  4. Department of Space, Government of India [2016AEISR0034]

向作者/读者索取更多资源

Accurate measurement and prediction of laminar burning velocity is important for characterization of premixed combustion properties of a fuel, development and validation of new kinetic models, and calibration of turbulent combustion models. Understanding the variation of laminar burning velocity with thermodynamic conditions is important from the perspective of practical applications in industrial furnaces, gas turbine combustors and rocket engines as operating temperatures and pressures are significantly higher than ambient conditions. With this perspective, a brief review of spherical flame propagation method, counterflowistagnation burner method, heat-flux method, annular stepwise method, externally heated diverging channel method, and Bunsen method is presented. A direct comparison of power exponents for temperature (alpha) and pressure (beta) obtained from different experiments and derived from various kinetic mechanisms is reported to provide an independent tool for detailed validation of kinetic schemes. Accurate prediction of laminar burning velocities at higher temperatures and pressures for individual fuels will help in closer scrutiny of the existing experimental data for various uncertainties due to inherent challenges in individual measurement techniques. Laminar burning velocity data for hydrogen (H-2), gaseous alkane fuels (methane, ethane, propane, n-butane, n-pentane), liquid alkane fuels (n-heptane, isooctane, n-decane), alcohols (CH3OH, C2H5OH, n-propanol, n-butanol, n-pentanol) and di-methyl ether (DME) are obtained from literature of last three decades for a wide range of pressures (1-10 bar), temperatures (300-700 K), equivalence ratios and mixture dilutions. The available experimental and numerical data for H-2 and methane fuels compares well for various pressures and temperatures. However, more experimental and kinetic model development studies are required for other fuels. Comparison of laminar burning velocity data obtained from different measurement techniques at higher initial pressures and temperatures showed significant deviations for all fuels. This suggests to conduct focused measurements at elevated pressure and temperature conditions for different fuels to enable the development of accurate kinetic models for wider range of mixtures and thermodynamic conditions. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据