4.7 Article

Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon

出版社

ROYAL SOC
DOI: 10.1098/rspb.2018.0935

关键词

evolution; ecology; genomics

资金

  1. Bonneville Power Administration [200890700]
  2. Center for Mathematical Modeling [AFB 170001, 21140124]
  3. National Laboratory of High Performance Computing of Chile [ECM-02]

向作者/读者索取更多资源

A broad portfolio of phenotypic diversity in natural organisms can buffer against exploitation and increase species persistence in disturbed ecosystems. The study of genomic variation that accounts for ecological and evolutionary adaptation can represent a powerful approach to extend understanding of phenotypic variation in nature. Here we present a chromosome-level reference genome assembly for Chinook salmon (Oncorhynchus tshawytscha; 2.36 Gb) that enabled association mapping of life-history variation and phenotypic traits for this species. Whole-genome re-sequencing of populations with distinct life-history traits provided evidence that divergent selection was extensive throughout the genome within and among phylogenetic lineages, indicating that a broad portfolio of phenotypic diversity exists in this species that is related to local adaptation and life-history variation. Association mapping with millions of genome-wide SNPs revealed that a genomic region of major effect on chromosome 28 was associated with phenotypes for premature and mature arrival to spawning grounds and was consistent across three distinct phylogenetic lineages. Our results demonstrate how genomic resources can enlighten the genetic basis of known phenotypes in exploited species and assist in clarifying phenotypic variation that may be difficult to observe in naturally occurring organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据